WW\Un\’V}'\

Test it simple!

Eclipse & Windows

Quick Start Guide

for Keywords Driven Testing

Release 1.0

© 2017 Maveryx srl.
All rights reserved.

© Maveryx srl

All rights reserved. This document is the property of Maveryx srl. It must not be copied partly or in full without
obtaining the prior written consent of Maveryx srl. Permission to copy and implement the material contained
herein is granted subject to the conditions that any copy or re—publication must bear this legend in full. That any
derivative work must bear a notice that it is Maveryx srl copyright document jointly published by the copyright
holders and that none of the copyright holders shall have any responsibility or liability whatsoever to any other
party arising from the use or publication of the material contained herein.

At the time of going to press, this paper is as thorough and correct as possible: however, information herein
contained may have been updated without prior notice after this date. Maveryx srl reserves the right to change
the functions of its products at any time without prior notice.

Trademarks
e Eclipseis a trademark of Eclipse Foundation Inc.

e Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries.

e Windows is aregistered trademark of Microsoft Corporation in the United States and other countries.
e UNIXis a registered trademark of The Open Group in the United States and other countries.

All other company, product, or service names contained on this site may be trademarks or service marks of others
and are the property of their respective owners.

INSEAIlING MAVEIYX...uiiiiiiiiiiiiii it 5

SYSTEM REGUITEMENTS ...tttk b bbbttt ettt b b 5
oYY =] €] o] OSSPSR 5
(@] o TeT =L 0) VA1 1 SO RRSSPSN 5
ECHIPSE VEISION ...ttt b bbbttt n e bbbt b b e ene s 5
GEIING IMAVEIYX ...ttt s ettt e st e e e s te et e e s e e te e beeseesse e teeseesteeteeneeaneestaenseaneenseentens 5
INSEAITING IMTAVEIYX ...ttt ettt et e et e s s et e e e e e s e e s teebeeneesreeneeneesreeneans 5
INSAlAtioN ON WINGOWSo.viiiiiiieiecie ettt sttt aesneenneenne s 5
Configuration of the ECHIPSE PIUG-INooiiiiieiie e 6
Building Your First Maveryx Keywords driven test..........ccccoiiiiiiiiiiii s 8
Creating @ NEW MaVEIYX PIOJECL.......ciiiiieiecie sttt s ste e ste et ste et e e e ae st e ste e aeaseesreenesneesreentens 8
KEYWOIA—OITVEN TESTING ...ttt bbbttt b bbb eneas 9
Creating keyword-driven tests USING XMLcccooiiiiiiiiiniee s 10
Creating keyword-driven tests USING CSVooiiciiiic et 11
Creating keyword-driven tests USING EXCEIocovvoiiiieiiic e 11
Setting UP the 1aUNCN FIlE ... 12
RUNNING @ KEYWOId-ArIVEN TEST.......cciiiieie ettt s sra e e re e e 14

Viewing Test RESUILS IN ECHPSE ...ocvviiieeeiie e 15

Installing Maveryx

System Requirements

Maveryx requires your computing environment meets some minimum requirements.

Java Version
Maveryx requires a fully compliant J2SE Java Runtime Environment 1.6 or later’.

Operating System
Maveryx is a 100% Java application and should run correctly on any system that has a compliant
Java implementation.
Maveryx has been tested and works with:
e Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 10
e Unix (Linux)
e MacOSX

Eclipse Version
To install the Maveryx plug-in for Eclipse you must have the following:
e Eclipse Ganymede or later (version 3.4)°

Getting Maveryx

The easiest way to begin using Maveryx is to first download the latest production release and
install it.

The latest stable version of Maveryx is available at

e http://www.maveryx.com/

Installing Maveryx

Installation on Windows

Windows users can download an installer for the relevant version of Maveryx. To install
Maveryx run the Setup program following the on-screen instructions. The setup installs both
the Maveryx Framework and the Eclipse plug-in.

NOTE: If you are upgrading your installation of Maveryx from a previous version, you will need
to uninstall the old Maveryx version before installing the new version.

! http://java.sun.com/javase/downloads/index.jsp
* http://eclipse.org/downloads

http://www.maveryx.com/
http://java.sun.com/javase/downloads/index.jsp
http://eclipse.org/downloads

Configuration of the Eclipse Plug-in

Maveryx offers a custom plugin for the Eclipse IDE. This plugin provides a powerful, integrated environment in
which to develop Maveryx tests. It extends the capabilities of Eclipse to let you quickly set up new Maveryx
projects, build a test suite, debug your tests, and much more.

To configure the Maveryx Eclipse plug-in you must specify the location of your Maveryx directory:

1. Start Eclipse, then select Window > Preferences
2. Filter for or navigate to the Maveryx page
3. Enterthe Maveryx installation path into the Maveryx Location field

4. Click OK

Mavigate Search Project Run Window Help

~ L EHE EE Mew Window o
Mew Editor
it 5E Y= 0 Hide Toolbar DrivenTest
iorddriven
Open Perspective »
Show View]

Customize Perspective...

) ome examp
Save Perspective As...
Reset Perspective...

. it.Mavery
Close Perspective ivenTesti
Close All Perspectives
Mavigation 3 Jur curren
Preferences RYX_DEMD_

Figure 1 - Window — Preferences

% Preferences

|typefi|ter text |

>
>
>
>
>

VoW Y

General

Ant

Help

Install/Update

Java

Maveryx

Plug-in Development
Run/Debug

Team

‘}‘{ Maveryx

Maveryx Preferences

Maveryx Location: | C:\Maveryx

Show Test Details Report

| Restore DefauHs| | Apply

@

[ok] cancel

Figure 2 - Maveryx — Browse

Your Eclipse IDE is now set up to develop Maveryx tests,

Building Your First Maveryx Keywords driven test

This section teaches you how to build your first Maveryx test.
You’ll learn how to:

—_
.

create a Maveryx test project with the Eclipse plugin
create a Maveryx project

configure the AUT launch file

run the tests and view the results

Pow N

The application used in the following section is contained into the example.jar file in
MAVERYX_HOME/demo/ and is described at

https://docs.oracle.com/javase/tutorial/uiswing/components/passwordfield.html

Creating a new Maveryx project

A Maveryx project contains source code and related files for building a test suite. It has an
associated Java builder that can incrementally compile Java source files as they are changed.

To create a new Maveryx test project in workspace:
5. Launch the Eclipse IDE
6. Inthe Maveryx Eclipse Perspective:
a. select File —» New — Maveryx Test Project (Figure 33) or
b. click the [] button on the toolbar

7. In the Maveryx Test Project window (Errore. L'origine riferimento non é stata
trovata.4)

a. enter a name for the project (e.g. MyFirstMaveryxProject)
b. inthe JRE section make sure that Java/JRE 6 or higher is selected
8. Click Finish to create the test project

& Maveryx - Eclipse SDK

558 Edit Source Refactor Navigate Search Project Run Window Help
New Alt+5hift+N ¥ |7 Maveryx Test Project
Open File... (2% Java Project

% Project...

% Maveryx Test Class
5 Package

(& Class

€ Interface

G Enum

(@’ Annotation

£ Source Folder

2’| Refresh F5 14 Java Working Set
Convert Line Delimiters To »| (5 Folder
¥ File
[Z] Untitled Text File
Switch Workspace]
[Other... Ctrl+N

Restart

r

Figure 3 - File —» New — Maveryx Test Project

https://docs.oracle.com/javase/tutorial/uiswing/components/passwordfield.html

= Maveryx Test Project I. E] iz_l

Mew Maveryx Test Project
Configure a New Maveryx Test Project 1)
Project name: MyFirstMaveyxProject
Use default location
D\eclipse-indigo-test\workspace\MyFirstMaveyxProject Browse
IRE
1 Use an execution environment JRE: JavaSE-1.6
) Use a project specific IRE: jrel 8.0_20
@) Use default JRE (currently 'jdidl.6.0_31") Configure JRES...
Project layout
1 Use project folder as root for sources and class files
@ Create separate folders for sources and class files Configure default...
Working sets
[] Add project to working sets
l@:' < Back H MNext = J [Finish] I Cancel

Figure 4 - New Maveryx Test Project

Keyword-driven testing

Keyword-driven tests, also known as table-driven or action-word tests are automated tests that
are developed in data tables (independent of the automated test tool used) with a vocabulary
of reusable Keywords that correspond to automated testing actions such as “StartApplicaton”,
“Login” ... Each keyword specifies the action to be executed on the application under test and
the parameters associated with the action.

Maveryx supports keyword-driven tests written in Excel spreadsheets, comma-separated (CSV)
files and XML files. It provides built-in keywords for all supported GUI objects. Maveryx also
supports variables and an extension plugin mechanism to add new keywords, variable types,
and keyword file formats.

In the MAVERYX_HOME/demo directory there are some examples using the keyword-driven
approach.

Creating keyword-driven tests using XML

Maveryx supports XML sources with the following structure:

<?xml version="1.0" encoding="UTF-8"7?>
<testcase name="" description="" author="" requirements="">
<action name="CLICK">
<object name="Disable middle button" type="BUTTON"/>
<container name="" type="FRAME"/>
</action>
<action name="CLICK">
<object name="Enable middle button" type="BUTTON"/>
<container name="ButtonDemo" type="FRAME"/>
</action>
<action name="HAS TOOLTIP">
<object name="Disable middle button" type="BUTTON"/>

<container name="ButtonDemo" type=""/>
<parameters>
<param value="Click this button to disable the middle button."/>
</parameters>
</action>
<action name="CLOSE">
<object name="" type="FRAME"/>

testcase: the root element. testcase shall consist at least of the following properties:
e name: a string label/ID for the test case (OPTIONAL)
e description: a brief description of the test case (OPTIONAL)
e quthor: the name of the test case author (OPTIONAL)
e requirements: the related requirement(s) or use case(s) (OPTIONAL)
This element shall contain at least of one action element.

action: contains the action/keyword to be executed. action shall consist of the following
properties:

e name: the identifier of the action/keyword to be executed

Such element may contain the following elements.

object: the GUI Object to test. object shall consist of the following properties:
e name: the identifier of the GUI Object to test (OPTIONAL)
e type: the type of the GUI Object to test (OPTIONAL)

container: the container/owner of the GUI Object to test (object). container shall consist of the
following properties:

e name: the identifier of the container object (OPTIONAL)

e type: the type of the container object (OPTIONAL)
parameters: the parameters associated with the action/keyword. parameters shall one or more
param elements (depending on the number of parameters associated with the action).
param: a parameter associated with the action/keyword. param shall consist of the following
properties:

e value: the parameter value
value can be a variable:

- s{file path} {testdata name} {data id} : to use the data-driven mechanism
provided by Maveryx [Errore. L'origine riferimento non é stata trovata.] -

example ${C:/Maveryx/demo/data/Test_Data.xIs} {username} {user1})
- \\${value} : to use a custom data-driven mechanism

Creating keyword-driven tests using CSV

Maveryx supports CSV sources with the following structure:

Object;Name;Container;Container Name;Action;Data;Data;Data

BUTTON; Disable middle button;FRAME;;CLICK;;;

BUTTON;Enable middle button;FRAME;Button demo;CLICK;;;

BUTTON; Disable middle button;;ButtonDemo;HAS TOOLTIP;Click this button to disable the
middle button.;

FRAME; ;; ;CLOSE; ; ;

The first line is the header.

Object: the type of the GUI Object to test (OPTIONAL)

Name: the name of the GUI Object to test (OPTIONAL)

Container: the type of the container/owner object (OPTIONAL)
Container name: the name of the container/owner object (OPTIONAL)
Action: the action/keyword to be executed

Data, ... Datay: the parameters (e.g. input, expected output ...) associated with t
action/keyword (OPTIONAL)

Data; can be a variable:
- s{file path} {testdata name} {data id} : to use the data-driven mechanism

he

provided by Maveryx (e.g. ${ C:/Maveryx/demo/data/Test_Data.xls} {username}

{user1})

- \\${value} : to use a custom data-driven mechanism
You can add more Data element, depending on your keyword.

Creating keyword-driven tests using Excel

Maveryx supports MS Excel sources with the following structure (Figure 5).

8
Figure 5 — Keyword-driven test using Excel

The Test Case header contains the following information:
e Test Case ID : a string label/ID for the test case (OPTIONAL)

I/DS\I = s Keywordxlsx - Microsoft Excel -\ x
J Home Insert Page Layout Formulas Data Review View Developer Classification 'Q) =
'_j & | [Catibri -ln -[A A= = =[] Nrap Text ReRsciinion | e C?a
- e} == Delete = E' -
Paste B I U = = =||:E i=|| a] Merge & Cente a8 .~ op g |0 ;00 Conditional Format Cell e Sort & Find 8
- j e = - e Formatting = as Table = Styles ‘_;jFormat' @~ Filter~ Select~
Clipboard = Font Alignment] Number Styles Cells Editing
A4 - # | ButTON v
A B & D E F G =
1 [TestCaseID: Author(s) :
- -
7 |Description : Requirement(s) : -
DB A » A R D A R A A 0 DATA DATA
3
4 [BUTTON ~ sable middle button CLICK
5 |BUTTON Enable middle button Button demo CLICK
Click this button to
BUTTON HAS_TOOLTIP disable the middle
6 Disable middle button ButtonDemo button.
7 |FRAME CLOSE

e Description: a brief description of the test case (OPTIONAL)

e Author(s): the name of the test case author (OPTIONAL)

e Requirement(s): the related requirement(s) or use case(s) (OPTIONAL)
The Test Case body contains the following elements:

Object: the type of the GUI Object to test (OPTIONAL). You can choose the value from a list
(combo box) of all supported GUI Objects’.

Name: the name of the GUI Object to test (OPTIONAL)

Container: the types of the container/owner object (OPTIONAL). You can choose the value
from a list (combo box) of all supported GUI Objects.

Container name: the name of the container/owner object (OPTIONAL)

Action: the action/keyword to be executed. You can choose the action/keyword from a list
(combo box) of all supported ones.
Data, ... Datay: the parameters (e.g. input, expected output ...) associated with the
action/keyword (OPTIONAL)
Data; can be a variable:
- s{file path} {testdata name} {data id} : to use the data-driven mechanism
provided by Maveryx (e.g. ${ C:/Maveryx/demo/data/Test_Data.xls} {username}

{user1})

- \\${value} : to use a custom data-driven mechanism
You can add more Data element, depending on your keyword.

Setting up the launch file
This section describes the XML format used for launch files.

To execute the application under test you have to create an XML launch file as the one below*
(available in MAVERYX HOME/demo/).

<?xml version="1.0" encoding="UTF-8"?>
<AUT_DATA>

<WORKING_DIR>C:\Maveryx\demo</WORKING_DIR> <!-- change this path to the application directory -->
<APPLICATION_NAME>PasswordDemo</APPLICATION_NAME>
<AUT_ARGUMENTS></AUT_ARGUMENTS>

<VM_ARGUMENTS></VM_ARGUMENTS>

<DESCRIPTION>PasswordDemo test</DESCRIPTION>

<JRE_PATH>C:\Program Files\Java\jre6\</JRE_PATH> <!-- change this path to your JRE home -->

<MAIN_CLASS>com.sun.demo.PasswordDemo</MAIN_CLASS>

® You can add new GUI Objects and Actions/Keywords to the list (combo box) by adding values
starting from row = 100. The default password to unprotect sheet is ‘1234’.

* We recommend you start from the provided example.

<CLASSPATH>
<LIB>
<PATH>C:\Maveryx\demo\example.jar;</PATH> <!-- change this path to the application
executable jar file -->
</LIB>
</CLASSPATH>

</ AUT_DATA>

AUT_DATA: the root element.

WORKING_DIR: the directory from which the application under test is launched.
APPLICATION_NAME: the name of the application to test.

AUT_ARGUMENTS: the arguments to pass to the application’s main method.

VM_ARGUMENTS: the Java VM arguments to use to run the application under test. Refer to
java help for more details.

DESCRIPTION: a textual description of the application to test. [optional]

JRE_PATH: the full file system path to the HOME directory containing the Java executable used
to run the application under test.

MAIN_CLASS: the name of the main class to be invoked.

CLASSPATH: this element contains the classpath. CLASSPATH shall consist of one or more LIB
elements.

LIB: specifies a JAR file needed to execute the application under test. An element LIB shall
consist of PATH.

<LIB>

<PATH>C:\Maveryx\demo\example.jar;</PATH>
</LIB>

PATH: the full file system path to a JAR file needed to execute the application under test

If your application classpath consists of n JAR files, you can create n LIB elements, one for each
JAR, or only one LIB element concatenating all paths.

For example, if your classpath consists of lib1.jar, lib2.jar and lib3.jar in C:imyApp| you can create:

<LIB>

<PATH>C:\myApp\libl.jar;</PATH>
</LIB>
<LIB>

<PATH>C:\myApp\lib2.jar;</PATH>
</LIB>
<LIB>

<PATH>C:\myApp\lib3.jar;</PATH>

</LIB>

or

<LIB>
<PATH>C:\myApp\libl.jar;C:\myApp\lib2.jar;C:\myApp\lib3.jar;</PATH>
</LIB>

Running a keyword-driven test
To run a keyword-driven test, you have to create a new Maveryx Test Class.

In the test script you have to first import the relevant libraries:
import org.maveryx.keydriven.KeywordDrivenTestManager;

Then you have to create a new KeywordDrivenTestManager() object and invoke the run() method:

new KeywordDrivenTestManager().run(MAVERYX DEMO_DIR + "data/Keyword.xIsx");

The run method may take as input two parameters:
e the keyword-driven test to run (MANDATORY)
e alist of arguments (OPTIONAL)

In case of an Excel file the list of arguments shall contain the Name/ID of the sheets to be
executed. If no argument is passed, all sheets within the file are executed.

new KeywordDrivenTestManager().run(MAVERYX DEMO_DIR + "data/Keyword.xlsx", new String[]{"Sheet1"});

In case of a Comma-Separated file the list of arguments shall contain:
e the values delimiter (default ;)
e the quote delimiter (default ‘”’)

If no argument is passed the default values are used.

To run a test as JUnit Test (Figure 67):

1. In the Package Explorer, select the Java compilation unit containing the test you want
to launch

2. Press the Run [Ii:"] button in the workbench toolbar or select Run — Run from the
workbench menu. Alternatively, select Run As — JUnit Test from the Package Explorer
pop-up menu, select Run — Run As — JUnit Test in the workbench menu bar, or select
Run As — JUnit Test in the drop-down menu on the Run tool bar button

3. Your test is now launched

[# Package Explorer 'Eg Hierarchy | =] §~ 3
=] lzﬁ{ Maveryx_Demo
)\ Referenced Libraries

-8

& src
=-H#} org.maveryx.demo

53

(&

£ (B

> New
[J% MyTestcla

=-H#} org.maveryx.c Open

#

#

L,M MaveryxD: Open With
|} package-ir Open Type Hierarchy

=8 org.maveryx.C show In

(#
=

L& MaveryxTe
- [} package-ir i) Copy

=-H3 org.maveryx.c 15 Copy Qualified Name:

&

5855808 88

& REE

*

[F ButtonTes! % paste

+ | CheckBox1 3 Delete

[& ComboBox
L& DialogTest] Build Path
L& GuiObject] Source

[B% MenuTest, Refactor

1[4 package-r

[£ PasswordT &3 Import...
[#% RadioButtq g7y Export...
[& SpinBoxTe
LL{ TableTest.
L& TextTest.j
L& ToggleBut! < Refresh
L& TreeTest.j -

References
Dedarations

G- JRE System Library

-2 JUnit 4

To run a test as Java class:

1. In the Package Explorer, select the Java compilation unit containing the test you want

to launch

2. Press the Run [i:i'] button in the workbench toolbar or select Run — Run from the
workbench menu. Alternatively, select Run As — Java Application from the Package
Explorer pop-up menu, select Run — Run As — Java Application in the workbench
menu bar, or select Run As — Java Application in the drop-down menu on the Run tool

bar button

Debug As
Team
Compare With
Replace With

Restore from Local History...

Properties

Assign Working Sets...

F3

F4
Alt+Shift-+

Ctrl+C

Ctrl+v
Delete

Alt+Shift+S
Alt+Shift+T

F5

Alt+Enter

»

»
»

vy v vww

Mz 1 JUnit Test Alt+shift+X, T

Run Configurations...

Figure 6 — Run as JUnit Test

3. Your testis now launched

You can also launch your test scripts by selecting the Maveryx project instead of the

compilation unit

Viewing Test Results in Eclipse

Maveryx comes with powerful reports and metrics to enable users to quickly and easily

interpret the test results.

Before executing the tests, to open the Report view”, in the Eclipse toolbar, select Window —

Show View — Reports (Figure 7)

> The Report View is automatically loaded when the Maveryx Perspective is opened.

Help

A =

e Do
Open Perspective

&l Console Alt+Shift+Q, C
Customize Perspective... (&) Dedaration Alt+5hift+Q, D
Save Perspective As... @ Javadoc Alt+Shift+Q, 3
Reset Perspective... 5. Navigator
£lose Permpective 9% outline Alt+Shift+Q, O
Cose AERrepECives [# Package Explorer Alt+Shift+Q, P
Navigation [l problems Alt+Shift+Q, X
Preferences Eig Progress

i orer

> Alt+5hift+Q, 5

3 Tasks

[Templates

Yo Type Hierarchy Alt+Shift+Q, T

Other... Alt+5hift+Q, Q

Figure 7 — Open the Report view

When you run your tests, Maveryx displays the status of the tests (Figure 8) in the Report view.

= Maveryx - MyFirstMaveyxProject/src/test/MyTestCase java - Eclipse SDK

(50

File Edit Source Refactor Mavigate Search Project Run Window Help

)2 S iF-0-Q-

HE~- @ PAEN BRE@ H-F~Ce~a -

B [Naen] ~

[# PackageE |gu JUnit 2 =0

Finished after 6.362 seconds =
a® G| @ 2 [-

[J] MyTestCasejava &2

= O|(07 Reports &

5E Outline | =0

FUTITrOwS cxCepTIon
By

@after

Runs: 1/1 B Errors: 0 B Failures: 0

EE test.MyTestCase [Runner: JUnit 4]

< [

= Failure Trace S5 =

public void tearDown() throws Exception {
//Close the application main frame
GuiFrame f = new GuiFrame();
f.close();

//Close the test environment
Bootstrap.stop():

}

[

* Password verification in a valid case

* fithrows Exception

*/

@Test

public void test@@l() throws Exception {
/{Create a new password text field
GuiPasswordText t = new GuiPasswordText();

//Check that the password text field is enabled
assertTrue(t.isEnabled());

//Check that the password text field is editable
assertTrue(t.isEditable());

//set the password
t.setText("bugaboe™);

f/Click the OK button
GuiButton ok = new GuiButton("OK");
ok.click();

//Check the message in the dialog
Guilabel message = new Guilabel("Success!™);
assertEquals(message.getActualld(), "Success! You typed the right password.");

//Close the message dialog
ok.click();

m

Test Execution Summary

®Failed = 0 (0%)
®Ignored = 0 (0%)
®Passed =1(100%)

EA Problems (@ Javadoc f@ Declaration (E Console &2 Q" Searcﬂ

%% | EBei[EE =2 E~--"0

<terminated> Rerun test.MyTestCase [JUnit] C:\Program Files (x86)\Java\jdkl.6.0_31\bin\javaw.exe (Apr 28, 2017 3:06:25 PM)

sending START_ENV

START_ENV sent

checking REGISTER received
REGISTER received (from port 1199)
sending START_AUT

START_AUT sent

closed: PasswerdDemo

closed: Bootstrap

4 m

-

| Writable | Smart Insert

Figure 8 - Test Execution Status

|82:1

To view more detailed reports and metrics at the end of each test execution:

1. Select Window — Preferences to open the Preferences panel (Errore. L'origine
riferimento non é stata trovata.1)

2. Select Maveryx from the left panel
3. Select Show Detailed Test Reports
4. Click Apply, and then OK.

After executing all tests the Test Execution Details window (Errore. L'origine riferimento non

é stata trovata.o)

will appear listing the status of all tests.

T Test Exccution Details - — -q \ u @1

Detailed Test Report
Test Cases
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% S55% 60% 65% 0% 5% B0% B5% 90% 95% 100%

w
3]
W
W
o
T test.MyTestCase
p
W
[
it

B Failed ® Passed ® Ignored I
<« < Tr

