
© 2017 Maveryx srl.

All rights reserved.

Eclipse & Windows

Quick Start Guide
for Keywords Driven Testing

Release 1.0

 Maveryx srl

All rights reserved. This document is the property of Maveryx srl. It must not be copied partly or in full without
obtaining the prior written consent of Maveryx srl. Permission to copy and implement the material contained
herein is granted subject to the conditions that any copy or re–publication must bear this legend in full. That any
derivative work must bear a notice that it is Maveryx srl copyright document jointly published by the copyright
holders and that none of the copyright holders shall have any responsibility or liability whatsoever to any other
party arising from the use or publication of the material contained herein.

At the time of going to press, this paper is as thorough and correct as possible: however, information herein
contained may have been updated without prior notice after this date. Maveryx srl reserves the right to change
the functions of its products at any time without prior notice.

Trademarks

 Eclipse is a trademark of Eclipse Foundation Inc.

 Java and all Java–based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries.

 Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

All other company, product, or service names contained on this site may be trademarks or service marks of others
and are the property of their respective owners.

Installing Maveryx ... 5

System Requirements ... 5

Java Version ... 5

Operating System ... 5

Eclipse Version .. 5

Getting Maveryx .. 5

Installing Maveryx ... 5

Installation on Windows .. 5

Configuration of the Eclipse Plug-in ... 6

Building Your First Maveryx Keywords driven test ... 8

Creating a new Maveryx project .. 8

Keyword–driven testing ... 9

Creating keyword-driven tests using XML .. 10

Creating keyword-driven tests using CSV ... 11

Creating keyword-driven tests using Excel ... 11

Setting up the launch file ... 12

Running a keyword-driven test .. 14

Viewing Test Results in Eclipse .. 15

Installing Maveryx

System Requirements

Maveryx requires your computing environment meets some minimum requirements.

Java Version

Maveryx requires a fully compliant J2SE Java Runtime Environment 1.6 or later1.

Operating System

Maveryx is a 100% Java application and should run correctly on any system that has a compliant
Java implementation.

Maveryx has been tested and works with:

 Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 10

 Unix (Linux)

 Mac OS X

Eclipse Version

To install the Maveryx plug-in for Eclipse you must have the following:

 Eclipse Ganymede or later (version 3.4)2

Getting Maveryx

The easiest way to begin using Maveryx is to first download the latest production release and
install it.

The latest stable version of Maveryx is available at

 http://www.maveryx.com/

Installing Maveryx

I n s t a l l a t i o n o n W i n d o w s

Windows users can download an installer for the relevant version of Maveryx. To install
Maveryx run the Setup program following the on-screen instructions. The setup installs both
the Maveryx Framework and the Eclipse plug-in.

NOTE: If you are upgrading your installation of Maveryx from a previous version, you will need
to uninstall the old Maveryx version before installing the new version.

1 http://java.sun.com/javase/downloads/index.jsp
2 http://eclipse.org/downloads

http://www.maveryx.com/
http://java.sun.com/javase/downloads/index.jsp
http://eclipse.org/downloads

C o n f i g u r a t i o n o f t h e E c l i p s e P l u g - i n

Maveryx offers a custom plugin for the Eclipse IDE. This plugin provides a powerful, integrated environment in
which to develop Maveryx tests. It extends the capabilities of Eclipse to let you quickly set up new Maveryx
projects, build a test suite, debug your tests, and much more.

To configure the Maveryx Eclipse plug-in you must specify the location of your Maveryx directory:

1. Start Eclipse, then select Window > Preferences

2. Filter for or navigate to the Maveryx page

3. Enter the Maveryx installation path into the Maveryx Location field

4. Click OK

Figure 1 – Window → Preferences

Figure 2 – Maveryx → Browse

Your Eclipse IDE is now set up to develop Maveryx tests,

Building Your First Maveryx Keywords driven test

This section teaches you how to build your first Maveryx test.

You’ll learn how to:

1. create a Maveryx test project with the Eclipse plugin

2. create a Maveryx project

3. configure the AUT launch file

4. run the tests and view the results

The application used in the following section is contained into the example.jar file in
MAVERYX_HOME/demo/ and is described at

https://docs.oracle.com/javase/tutorial/uiswing/components/passwordfield.html

Creating a new Maveryx project

A Maveryx project contains source code and related files for building a test suite. It has an
associated Java builder that can incrementally compile Java source files as they are changed.

To create a new Maveryx test project in workspace:

5. Launch the Eclipse IDE

6. In the Maveryx Eclipse Perspective:

a. select File → New → Maveryx Test Project (Figure 33) or

b. click the [] button on the toolbar

7. In the Maveryx Test Project window (Errore. L'origine riferimento non è stata

trovata.4)

a. enter a name for the project (e.g. MyFirstMaveryxProject)

b. in the JRE section make sure that Java/JRE 6 or higher is selected

8. Click Finish to create the test project

Figure 3 – File → New → Maveryx Test Project

https://docs.oracle.com/javase/tutorial/uiswing/components/passwordfield.html

Figure 4 – New Maveryx Test Project

Keyword–driven testing
Keyword-driven tests, also known as table-driven or action-word tests are automated tests that
are developed in data tables (independent of the automated test tool used) with a vocabulary
of reusable Keywords that correspond to automated testing actions such as “StartApplicaton”,
“Login” … Each keyword specifies the action to be executed on the application under test and
the parameters associated with the action.
Maveryx supports keyword-driven tests written in Excel spreadsheets, comma-separated (CSV)
files and XML files. It provides built-in keywords for all supported GUI objects. Maveryx also
supports variables and an extension plugin mechanism to add new keywords, variable types,
and keyword file formats.

In the MAVERYX_HOME/demo directory there are some examples using the keyword–driven
approach.

C r e a t i n g k e y w o r d - d r i v e n t e s t s u s i n g X M L

Maveryx supports XML sources with the following structure:

testcase: the root element. testcase shall consist at least of the following properties:

 name: a string label/ID for the test case (OPTIONAL)

 description: a brief description of the test case (OPTIONAL)

 author: the name of the test case author (OPTIONAL)

 requirements: the related requirement(s) or use case(s) (OPTIONAL)

This element shall contain at least of one action element.

action: contains the action/keyword to be executed. action shall consist of the following
properties:

 name: the identifier of the action/keyword to be executed

Such element may contain the following elements.

object: the GUI Object to test. object shall consist of the following properties:

 name: the identifier of the GUI Object to test (OPTIONAL)

 type: the type of the GUI Object to test (OPTIONAL)

container: the container/owner of the GUI Object to test (object). container shall consist of the
following properties:

 name: the identifier of the container object (OPTIONAL)

 type: the type of the container object (OPTIONAL)

parameters: the parameters associated with the action/keyword. parameters shall one or more
param elements (depending on the number of parameters associated with the action).

param: a parameter associated with the action/keyword. param shall consist of the following
properties:

 value: the parameter value

value can be a variable:
- ${file path} {testdata name} {data id} : to use the data-driven mechanism

provided by Maveryx [Errore. L'origine riferimento non è stata trovata.] -
example ${C:/Maveryx/demo/data/Test_Data.xls} {username} {user1})

- \\${value} : to use a custom data-driven mechanism

<?xml version="1.0" encoding="UTF-8"?>

<testcase name="" description="" author="" requirements="">

 <action name="CLICK">

 <object name="Disable middle button" type="BUTTON"/>

 <container name="" type="FRAME"/>

 </action>

 <action name="CLICK">

 <object name="Enable middle button" type="BUTTON"/>

 <container name="ButtonDemo" type="FRAME"/>

 </action>

 <action name="HAS_TOOLTIP">

 <object name="Disable middle button" type="BUTTON"/>

 <container name="ButtonDemo" type=""/>

 <parameters>

 <param value="Click this button to disable the middle button."/>

 </parameters>

 </action>

 <action name="CLOSE">

 <object name="" type="FRAME"/>

 </action>

</testcase>

C r e a t i n g k e y w o r d - d r i v e n t e s t s u s i n g C S V

Maveryx supports CSV sources with the following structure:

The first line is the header.

Object: the type of the GUI Object to test (OPTIONAL)

Name: the name of the GUI Object to test (OPTIONAL)

Container: the type of the container/owner object (OPTIONAL)

Container name: the name of the container/owner object (OPTIONAL)

Action: the action/keyword to be executed

Data1 … DataN: the parameters (e.g. input, expected output …) associated with the
action/keyword (OPTIONAL)

Datai can be a variable:
- ${file path} {testdata name} {data id} : to use the data-driven mechanism

provided by Maveryx (e.g. ${ C:/Maveryx/demo/data/Test_Data.xls} {username}
{user1})

- \\${value} : to use a custom data-driven mechanism
You can add more Data element, depending on your keyword.

C r e a t i n g k e y w o r d - d r i v e n t e s t s u s i n g E x c e l

Maveryx supports MS Excel sources with the following structure (Figure 5).

Figure 5 – Keyword-driven test using Excel

The Test Case header contains the following information:

 Test Case ID : a string label/ID for the test case (OPTIONAL)

Object;Name;Container;Container Name;Action;Data;Data;Data

BUTTON;Disable middle button;FRAME;;CLICK;;;

BUTTON;Enable middle button;FRAME;Button demo;CLICK;;;

BUTTON;Disable middle button;;ButtonDemo;HAS_TOOLTIP;Click this button to disable the

middle button.;

FRAME;;;;CLOSE;;;

 Description: a brief description of the test case (OPTIONAL)

 Author(s): the name of the test case author (OPTIONAL)

 Requirement(s): the related requirement(s) or use case(s) (OPTIONAL)

The Test Case body contains the following elements:

Object: the type of the GUI Object to test (OPTIONAL). You can choose the value from a list
(combo box) of all supported GUI Objects3.

Name: the name of the GUI Object to test (OPTIONAL)

Container: the types of the container/owner object (OPTIONAL). You can choose the value
from a list (combo box) of all supported GUI Objects.

Container name: the name of the container/owner object (OPTIONAL)

Action: the action/keyword to be executed. You can choose the action/keyword from a list
(combo box) of all supported ones.

Data1 … DataN: the parameters (e.g. input, expected output …) associated with the
action/keyword (OPTIONAL)

Datai can be a variable:
- ${file path} {testdata name} {data id} : to use the data-driven mechanism

provided by Maveryx (e.g. ${ C:/Maveryx/demo/data/Test_Data.xls} {username}
{user1})

- \\${value} : to use a custom data-driven mechanism
You can add more Data element, depending on your keyword.

Setting up the launch file

This section describes the XML format used for launch files.

To execute the application under test you have to create an XML launch file as the one below4
(available in MAVERYX_HOME/demo/).

<?xml version="1.0" encoding="UTF–8"?>
<AUT_DATA>

 <WORKING_DIR>C:\Maveryx\demo</WORKING_DIR> <!-- change this path to the application directory -->

 <APPLICATION_NAME>PasswordDemo</APPLICATION_NAME>

 <AUT_ARGUMENTS></AUT_ARGUMENTS>

 <VM_ARGUMENTS></VM_ARGUMENTS>

 <DESCRIPTION>PasswordDemo test</DESCRIPTION>

 <JRE_PATH>C:\Program Files\Java\jre6\</JRE_PATH> <!-- change this path to your JRE home -->

 <MAIN_CLASS>com.sun.demo.PasswordDemo</MAIN_CLASS>

3
 You can add new GUI Objects and Actions/Keywords to the list (combo box) by adding values

starting from row = 100. The default password to unprotect sheet is ‘1234’.
4 We recommend you start from the provided example.

 <CLASSPATH>
 <LIB>

<PATH>C:\Maveryx\demo\example.jar;</PATH> <!-- change this path to the application
executable jar file -->

 </LIB>
 </CLASSPATH>

</ AUT_DATA>

AUT_DATA: the root element.

WORKING_DIR: the directory from which the application under test is launched.

APPLICATION_NAME: the name of the application to test.

AUT_ARGUMENTS: the arguments to pass to the application’s main method.

VM_ARGUMENTS: the Java VM arguments to use to run the application under test. Refer to
java help for more details.

DESCRIPTION: a textual description of the application to test. [optional]

JRE_PATH: the full file system path to the HOME directory containing the Java executable used
to run the application under test.

MAIN_CLASS: the name of the main class to be invoked.

CLASSPATH: this element contains the classpath. CLASSPATH shall consist of one or more LIB
elements.

LIB: specifies a JAR file needed to execute the application under test. An element LIB shall
consist of PATH.

PATH: the full file system path to a JAR file needed to execute the application under test

If your application classpath consists of n JAR files, you can create n LIB elements, one for each
JAR, or only one LIB element concatenating all paths.

For example, if your classpath consists of lib1.jar, lib2.jar and lib3.jar in C:\myApp\ you can create:

or

<LIB>

 <PATH>C:\myApp\lib1.jar;C:\myApp\lib2.jar;C:\myApp\lib3.jar;</PATH>

</LIB>

<LIB>

 <PATH>C:\myApp\lib1.jar;</PATH>

</LIB>

<LIB>

 <PATH>C:\myApp\lib2.jar;</PATH>

</LIB>

<LIB>

 <PATH>C:\myApp\lib3.jar;</PATH>

</LIB>

<LIB>

 <PATH>C:\Maveryx\demo\example.jar;</PATH>

</LIB>

Running a keyword-driven test
To run a keyword–driven test, you have to create a new Maveryx Test Class.

In the test script you have to first import the relevant libraries:

import org.maveryx.keydriven.KeywordDrivenTestManager;

Then you have to create a new KeywordDrivenTestManager() object and invoke the run() method:

new KeywordDrivenTestManager().run(MAVERYX_DEMO_DIR + "data/Keyword.xlsx");

The run method may take as input two parameters:

 the keyword-driven test to run (MANDATORY)

 a list of arguments (OPTIONAL)

In case of an Excel file the list of arguments shall contain the Name/ID of the sheets to be
executed. If no argument is passed, all sheets within the file are executed.

new KeywordDrivenTestManager().run(MAVERYX_DEMO_DIR + "data/Keyword.xlsx", new String[]{"Sheet1"});

In case of a Comma-Separated file the list of arguments shall contain:

 the values delimiter (default ‘ ; ’)

 the quote delimiter (default ‘ ” ’)

If no argument is passed the default values are used.

To run a test as JUnit Test (Figure 67):

1. In the Package Explorer, select the Java compilation unit containing the test you want
to launch

2. Press the Run [] button in the workbench toolbar or select Run → Run from the
workbench menu. Alternatively, select Run As → JUnit Test from the Package Explorer
pop-up menu, select Run → Run As → JUnit Test in the workbench menu bar, or select
Run As → JUnit Test in the drop-down menu on the Run tool bar button

3. Your test is now launched

Figure 6 – Run as JUnit Test

To run a test as Java class:

1. In the Package Explorer, select the Java compilation unit containing the test you want
to launch

2. Press the Run [] button in the workbench toolbar or select Run → Run from the
workbench menu. Alternatively, select Run As → Java Application from the Package
Explorer pop-up menu, select Run → Run As → Java Application in the workbench
menu bar, or select Run As → Java Application in the drop-down menu on the Run tool
bar button

3. Your test is now launched

You can also launch your test scripts by selecting the Maveryx project instead of the
compilation unit

Viewing Test Results in Eclipse

Maveryx comes with powerful reports and metrics to enable users to quickly and easily
interpret the test results.

Before executing the tests, to open the Report view5, in the Eclipse toolbar, select Window →
Show View → Reports (Figure 7)

5
 The Report View is automatically loaded when the Maveryx Perspective is opened.

Figure 7 – Open the Report view

When you run your tests, Maveryx displays the status of the tests (Figure 8) in the Report view.

Figure 8 – Test Execution Status

To view more detailed reports and metrics at the end of each test execution:

1. Select Window → Preferences to open the Preferences panel (Errore. L'origine

riferimento non è stata trovata.1)

2. Select Maveryx from the left panel

3. Select Show Detailed Test Reports

4. Click Apply, and then OK.

After executing all tests the Test Execution Details window (Errore. L'origine riferimento non

è stata trovata.0) will appear listing the status of all tests.

